

Earth Sciences Architecture for Atmospheric Chemistry, Earth Radiation Balance, and Geomagnetism Measurements

Study Scientist

Warren Wiscombe Code 913 NASA Goddard Space Flight Center **Study Manager**

Chuck Williams
Code 850
NASA Goddard Space Flight Center

Study Contractor

Global Aerospace Corporation http://www.gaerospace.com

Relationship to Other In-Space Remote Sensing Studies

Focused on Earth Science Measurements from the Edge of Space

Background and Motivation

- Significant potential Earth science benefits from stratospheric platforms with
 - Long duration (> 100 days)
 - Autonomous coordination (data relay, position correction, and notification in the event of problems)
 - In-situ measurement capabilities
- Architecture for such measurements provides unique and challenging opportunities

Potential Benefits

- Low-cost, high-altitude (35 km) platform above 99% of Earth's atmosphere
- *In-situ* measurements eliminate assumptions inherent in remote sensing of same quantity
- Long-life platform provides high accuracy (through averaging) if errors are random
- Instrument recovery allows post-flight verification
- Easy upgrade to new technologies: recover and re-launch
- Validation of space-borne instruments

Potential Earth Science Applications

Atmospheric Chemistry

- Few actual profiles of chlorine and bromine (< 1 balloon launch per year)
- 100-day flight would provide snapshot of evolving stratospheric trace gas structure
- Stratospheric vertical profiles of trace gases Cl_y, No_y, Br_y, H, O₃
- Current space-based remote observations of ozone and ozonedestroying chemicals lack needed vertical resolution and continuity
- A global network of stratospheric platforms could provide the opportunity to make continuous, detailed vertical profile measurements of ozone and other atmospheric constituents over a long period of time, 1 year or more, and at unprecedented spatial and temporal scales

Potential Earth Science Applications

Earth Radiation Balance

- Fluxes at the top-of-the-atmosphere are primary drivers for climate change
- Satellites measure radiance, not flux
- Dynamics of the flux (hourly and daily synoptic variation) are unknown
- 100 platforms around the globe would measure flux directly and provide dynamics
- Upwelling shortwave (0.2 to 3 mm wavelength) and longwave (4 to 50 mm) radiation flux
- The thermal IR and solar radiative fluxes (that enter into earth radiation balance) are the primary drivers of the climate and global change
- A global network of stratospheric platforms could provide the opportunity to make direct measurements of fluxes
- By making these measurements from a stratospheric location, scientists could provide conclusive answers to fundamental questions like "is the Earth warming up?" and "is global cloudiness increasing or decreasing?"

Potential Earth Science Applications

Geomagnetism

- Non-uniform distribution of existing, land-based observatories
- Stratospheric platforms could act as proxies for geomagnetism observatory and provide data over oceans
- Accurate data needed for mineral and petroleum exploration
- Measurements of the Earth's magnetic field over various temporal and spatial scales offer an opportunity to study the Earth's interior and it's motions by identifying sources of the field
- Observations of magnetic field variations over long time scales (years) would help to detect magma displacements in the Earth mantle and potentially lead to forecasts of earthquake and volcanic eruptions
- A global network of stratospheric platforms would bridge the gap between surface and satellite measurements; provide observations with high resolution and high signal-to-noise ratio; provide global and regional coverage; and lead to development of three-dimensional maps of the Earth's magnetic field and its sources.

Key Development Challenges

- Long-duration (>100 days) flights
- Steerable platform (into and out of polar vortices)
- Launch location and time flexibility
- Reliable operation and payload recovery
- Precise orientation and pointing knowledge
- Power

Study's Objectives

Phase I

- Identify science goals, as they relate to NASA's Earth Science Research Strategy, for stratospheric platforms
- Identify and investigate a range of advanced platforms required for making Earth science measurements in the upper stratosphere

Phase II

 Identify the revolutionary technologies necessary for each platform needed to make the desired measurements

Phased Approach

- Phase I: Evaluate Architecture Options for Earth Science
 - Systems perspective
 - Examine various platform alternatives
 - Identify strengths of platform systems for meeting science objectives
 - Identify mission applications that deserve further study
- Phase II: Technology Roadmap
 - 10-15 year time frame
 - Infrastructure needs
 - Technology needs

Summary

- NASA's ESE would benefit tremendously from longduration autonomously coordinated in-situ measurements in the stratosphere
- Measurement architecture is unique and challenging
- Architecture shares technology areas with other In-Space Remote Sensing RASC studies
- Development of the architecture would revolutionize Earth science by answering fundamental questions about
 - Atmospheric chemistry
 - Earth radiation balance
 - Geomagnetism